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Introduction

• A Genetic Algorithm (GA) emulates
biological evolution to solve a complex
problem.

• GAs rely heavily on randomness.  Instead of
trying to solve the problem directly, they
create random solutions and randomly mix
them up until a good solution is found.



NP-Hard problems

• These are problems where no efficient
algorithm is known to exist.

• Computing power is irrelevant – computers
will never get fast enough to find solutions
for more than the most trivial instances of
these problems.

• Some famous problems: Traveling
Salesman Problem, 0-1 Knapsack Problem.



Example:Traveling Salesman
Problem (TSP)

• Given a collection of cities and the cost of
travel between each pair of them, what is
the cheapest way of visiting all of the cities?

• This problem is NP-hard – we will never be
able to find the optimal solution.  (Finding
the optimal solution would take N!).



 From http://en.wikipedia.org/wiki/Travelling_salesman_problem



Heuristics to the rescue
• A heuristic algorithm does not try to find the optimal

solution.  Instead, it attempts to find a good solution in
a reasonable running time.

• Example: Greedy algorithm
– Visit the nearest city each time (TSP problem).
– Does not give a good solution for some problem instances.

• GAs are also heuristic algorithms.  Unlike greedy
solutions, they can be tuned to better solve different
problem instances.



GA Process
1. Randomly generate initial population
2. Until a solution is found:

1. Score each individual in the population
2. Randomly select individuals as survivors
3. Perform crossover on survivors
4. Perform mutation on new generation (small

chance)
3. Report the best solution



0-1 Knapsack Problem

• This is another famous NP-hard problem.
• In this case, you want to select the items

that will fit in your knapsack and which will
maximize your total profit.  Each item has a
weight and a profit.



Sample
Knapsack
Problem

• Knapsack has a capacity of 80
• Available items:

– A: profit=55 weight=20
– B: profit=40 weight=18
– C: profit=30 weight=16
– D: profit=27 weight=16
– E: profit=20 weight=12
– F: profit=13 weight=8
– G: profit=9 weight=6
– H: profit=7 weight=5
– I: profit=4 weight=3
– J: profit=1 weight=1



Initial population
• This should be

generated
randomly.

• Solutions may be
invalid, but fitness
value should reflect
this.

• Solutions are often
represented as
binary strings, but
this is not required.

Sample initial population
Value:155 weight:79 items:[A, C, D, E, F,

G, J]
Value:122 weight:55 items:[A, B, E, H]
Value:112 weight:49 items:[A, B, F, I]
Value:80 weight:44 items:[B, E, G, H, I]
Value:71 weight:31 items:[A, G, H]
Value:84 weight:38 items:[A, E, G]
Value:75 weight:38 items:[B, C, I, J]
Value:54 weight:27 items:[B, F, J]
Value:107 weight:64 items:[C, D, E, F, G,

H, J]
Value:165 weight:78 items:[A, B, C, D, F]



Fitness function

• A fitness function is needed to score the solutions.
• This can be designed to either maximize profit or

minimize cost.
• In Java, we can’t have independent functions, so

you probably want to create a Scorer class.
• For the knapsack problem, scoring is easy.  A

knapsack’s fitness is the total profit of its contents
(unless there are overfilled knapsacks.)



Roulette Wheel
• Each individual

solution has a
random chance of
surviving.

• More fit solutions
will have more
slots on the wheel.

• java.util.Random
is your best friend
here.

Wheel Distribution

[A, C, D, E, F, G, J]:****************
    [B, E, G, H, I]:********
         [A, B, F, I]:***********

   [A, E, G]:*********
 [B, C, I, J]:********

        [A, B, E, H]:************
     [B, F, J]:******

[C, D, E, F, G, H, J]:***********
        [A, B, C, D, F]:*****************
                 [A, G, H]:*******



Crossover
Take two of the survivors and create two new

solutions with characteristics of the old:
Father: [B, D]

Mother: [A, D, F, H]
------------------

Son: [A, D]
Daughter: [B, D, F, H]



Mutation
• Each new child should also have a small

chance of a mutation.  This is a slight
modification to the child solution.

• For the Knapsack problem, this translates to
adding or removing an item from the
knapsack.

Before: [A, B, G, J]
After: [A, B, G, H, J]



When are we finished?
• This is up to you.  Some possibilities:

– The process has run for X generations.
– The most fit individual has not changed for X

generations.
– The most fit individual has a fitness greater than F.

• When you have finished, return the most fit
individual as your solution.



GA vs. Greedy results

• Best GA Solution obtained
Value:167 weight:80 items:[A, B, C, E, F,
G]

• Greedy Solution
Value:166 weight:79 items:[A, B, C, D, F,
J]



Some notes on GAs
• Allow time for tweaking the parameters at the end.

Make it easy to configure:
– Population size
– Mutation chance
– Run time

• Crossover often produces big jumps in fitness.
• Mutations tend to produce less healthy offspring, but

paradoxically they help improve the overall health
of the population.



Advanced GA techniques

• Elitism – Carry over some portion of the
best solutions to the next generation.

• Variable operators – Create multiple types
of crossovers and mutations.  Track the
health of the offspring they produce, and
adjust their usage accordingly.

• Tribes – Create separate populations that
only occasionally mix.  This may help avoid
converging on local maxima.



Multiple Sequence Alignment
• One practical application of genetic

algorithms is the multiple sequence alignment
problem.

• We need to align multiple DNA or protein
sequences.

• ClustalW is the standard tool for this, so we
have a baseline to compare against.



Sample generated alignment

GA Best Solution:
ATTGCC-ATT

ATGGCC-ATT

ATCCAATTTT

ATCTTC-TT-

ATT-------

--GGCC-AT-

ATTG------

Fitness: -74.0

ClustalW Solution:
ATCTTCTT--

ATCCAATTTT

ATT-------

--GGCCAT--

ATGGCCATT-

ATTGCCATT-

------ATTG

Fitness: -84.0


