Genetic Algorithms

Tom Austin

San Jose State University

Introduction

* A Genetic Algorithm (GA) emulates
biological evolution to solve a complex
problem.

* GAs rely heavily on randomness. Instead of
trying to solve the problem directly, they
create random solutions and randomly mix
them up until a good solution 1s found.

NP-Hard problems

* These are problems where no efficient
algorithm 1s known to exist.

* Computing power 1s 1rrelevant — computers
will never get fast enough to find solutions
for more than the most trivial instances of
these problems.

* Some famous problems: Traveling
Salesman Problem, 0-1 Knapsack Problem.

Example:Traveling Salesman
Problem (TSP)

* (G1ven a collection of cities and the cost of
travel between each pair of them, what 1s
the cheapest way of visiting all of the cities?

* This problem 1s NP-hard — we will never be
able to find the optimal solution. (Finding
the optimal solution would take N!).

From http://en.wikipedia.org/wiki/Travelling salesman problem

Heuristics to the rescue

* A heuristic algorithm does not try to find the optimal
solution. Instead, it attempts to find a good solution in
a reasonable running time.

« Example: Greedy algorithm
— Visit the nearest city each time (TSP problem).

— Does not give a good solution for some problem instances.

* GAs are also heuristic algorithms. Unlike greedy

solutions, they can be tuned to better solve different
problem 1nstances.

GA Process

1. Randomly generate 1nitial population

2. Until a solution 1s found:
Score each individual in the population
Randomly select individuals as survivors

Perform crossover on survivors

= » b=

Perform mutation on new generation (small
chance)

3. Report the best solution

0-1 Knapsack Problem

* This 1s another famous NP-hard problem.

* In this case, you want to select the items
that will fit in your knapsack and which will
maximize your total profit. Each item has a
weight and a profit.

* Knapsack has a capacity of 80

* Available items:
— A: profit=55 weight=20

— B: profit=40 weight=18

Sample — C: profit=30 weight=16

— D: profit=27 weight=16

Knap sack — E: profit=20 weight=12
Problem — F: profit=13 weight=8

— G: profit=9 weight=6
— H: profit=7 weight=5
— I: profit=4 weight=3
— J: profit=1 weight=1

Initial population

Sample initial population
Value:155 weight:79 items:[A, C, D, E, F,

e This should be

generated G. J]
randomly. Value:122 weight:55 items:[A, B, E, H]
e Solutions may be Value:112 weight:49 items:[A, B, F, 1]

invalid, but fitness Value:80 weight:44 items:[B, E, G, H, []

value should reflect Value:71 weight:31 items:[A, G, H]

this. Value:84 weight:38 items:[A, E, G]
 Solutions are often Value:75 weight:38 items:[B, C, I, J]
Value:54 weight:27 items:[B, F, J]

represented as _ |
bi tr but Value:107 weight:64 items:[C, D, E, F, G,
1nary strings, bu H, J]

this 1s not required. ygiye:165 weight:78 items:[A, B, C, D, F]

Fitness function

A fitness function 1s needed to score the solutions.

This can be designed to either maximize profit or
minimize cost.

In Java, we can’t have independent functions, so
you probably want to create a Scorer class.

For the knapsack problem, scoring 1s easy. A
knapsack’s fitness 1s the total profit of its contents
(unless there are overfilled knapsacks.)

Roulette Wheel

* Each individual
solution has a
random Chance Of [A’ C, D, E’ F, G, J]:****************

Wheel Distribution

SU.I‘ViViIlg. [B, E, G, H, [];*xxx**
. [A, B, F, I::***********
* More fit solutions a——
will have more B, C, |, J]+wswess
slots on the wheel. [A, B, E, H*#esssinnns

. . B, F, J ek kkk
* java.util.Random C.D.E F [G ’ J]]_****,,******

iS YOU,I' beSt friend [A, B, C, D, F]:*****************
here. [A, G’ H]:*******

Crossover

Take two of the survivors and create two new
solutions with characteristics of the old:

Father: [B, D]
Mother: [A, D, F, H]
Son: [A, D]
Daughter: [B, D, F, H]

Mutation

 Fach new child should also have a small
chance of a mutation. This 1s a slight
modification to the child solution.

* For the Knapsack problem, this translates to
adding or removing an item from the
knapsack.

Before: [A, B, G, J]
After: [A, B, G, H, J]

When are we finished?

e This 1s up to you. Some possibilities:

— The process has run for X generations.

— The most fit individual has not changed for X
generations.

— The most fit individual has a fitness greater than F.

* When you have finished, return the most fit
individual as your solution.

GA vs. Greedy results

» Best GA Solution obtained
Value:167 weight:80 items:[A, B, C, E, F,
G]

* Greedy Solution
Value:166 weight:79 items:[A, B, C, D, F,
J]

Some notes on GAS

* Allow time for tweaking the parameters at the end.
Make it easy to configure:
— Population size
— Mutation chance
— Run time

* Crossover often produces big jumps in fitness.

« Mutations tend to produce less healthy offspring, but
paradoxically they help improve the overall health
of the population.

Advanced GA techniques

* Elitism — Carry over some portion of the
best solutions to the next generation.

* Variable operators — Create multiple types
of crossovers and mutations. Track the
health of the offspring they produce, and
adjust their usage accordingly.

* Tribes — Create separate populations that
only occasionally mix. This may help avoid
converging on local maxima.

Multiple Sequence Alignment

* One practical application of genetic
algorithms 1s the multiple sequence alignment
problem.

* We need to align multiple DNA or protein
sequences.

e ClustalW 1s the standard tool for this, so we
have a baseline to compare against.

Sample generated alignment

GA Best Solution:

ATTGCC-ATT
ATGGCC-ATT
ATCCAATTTT
ATCTTC-TT-

Fitness: -74.0

ClustalW Solution:

ATCTTCTT--
ATCCAATTTT

—-—GGCCAT--
ATGGCCATT-
ATTGCCATT-

Fitness: -84.0

